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Fracture deformation and influence on permeability
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One of the simplest aspects of coupling between mechanics and hydromechanics of fractures is addressed by
the numerical resolution of the mechanical and hydrodynamic equations in three dimensions at the local level.
A mean field approximation is derived that may include nonlinear effects because of the variations of the
contact surface. Three types of fractures were studied, namely, model deterministic, Gaussian, and self-affine.
Numerical results relative to the closure of the fracture, the normal stiffness, and the permeability are presented
and discussed. They are satisfactorily compared to available experimental results.@S1063-651X~97!16108-6#

PACS number~s!: 83.50.2v
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I. INTRODUCTION

The major purpose of this paper is to study the deform
tion of fractures under normal loads and to determine
resulting changes in permeability. Since the permeability o
plane channel is known to vary as the third power of
spacing between the two walls, any small variation in t
distance may considerably modify the flow. Such variatio
occur for geological fractures because of the constant m
fications of stresses and strains in the underground med

Some analytical approaches of this problem can be fo
in the literature. The elastic deformation of a rough surfa
in contact with a perfectly flat elastic surface was analyz
by Greenwood and Williamson@1# by using an asperity
model; they used the Hertzian contact theory and assu
tions about the radius of curvature and heights of asper
and found a relationship between the normal stress and
deformation between a reference surface and the plan
contact. A ‘‘bed of nails’’ model for the fracture asperitie
was developed by Gangi@2# to study the permeability varia
tion of a fracture with the normal load. Tsang and Withe
spoon@3# considered the closure of a fracture as the resul
the deformation of voids located between the asperities;
behavior of the fracture under a normal stress and the fl
variation through it were obtained. Walsh and Grosenba
@4# analyzed the stiffness of joints considering the deform
tions of the asperities and of the surrounding matrix.

The asperity model was generalized by Brown and Sch
@5# by including the composite topography of the fractu
surfaces in the joint closure analysis. Theory agreed qua
tatively with experiments on ground glass surfaces. Bro
and Scholz@6# demonstrated later that the theory can be s
cessfully applied to mated surfaces of fractures if the spa
cross correlations of the surfaces are taken into acco
Such a description of fracture surfaces was also applie

*Permanent address: Institute for Problems in Mechanics, Rus
Academy of Sciences, 101 prosp. Vernadskogo, Moscow 117
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the determination of permeability by solving the Reynol
equation@7#.

The successful application of the asperity model requ
various surface geometry measurements that necessaril
volve some uncertainties. Joints with inhomogeneous s
faces or with loose material do not follow the theoretic
predictions@5#. Moreover, fractures with correlated surfac
require measurements of the correlation distance.

Surprisingly, in view of the complexity of the problem
there are few numerical models. A joint deformation mod
was developed by Hopkinset al. @8# in order to analyze the
relationship between the normal joint stiffness and the spa
geometry of the joint. The joint deformation was supposed
be a combination of the deformation of the half spac
around it and the compression of the asperities separa
joint surfaces. The asperities were modeled as disks un
going an elastic compression. The effect of the contact
ometry on the joint stiffness was studied by using a mo
with asperities of equal height regularly distributed over t
fracture plane.

Unger and Mase@9# performed a numerical study of th
hydromechanical behavior of fractures with rough self-affi
surfaces. Each surface was represented as a series of a
ties resting upon a solid half space. During closure, asper
that come into contact undergo compression as o
dimensional rectangular columns and punch into the supp
ing solid half space. The deformation of the asperities and
the half spaces is determined at a given closureV; the mean
contact stressPc over the contact zone is subsequently d
duced.

Some additional references about experimental results
closure of a single fracture subjected to normal load are
cussed in Secs. V and VI, which compare the numer
computations and the experimental data.

This paper is organised as follows. Section II is devo
to a general presentation of the problem. Basically, a frac
separates two semi-infinite solid blocks on which a unifo
load is applied at infinity. Because of this load, the fractu
undergoes some deformation that tends to reduce the frac
permeability. The resolution of this problem necessita
several ingredients. The solid matrix is assumed to be

an
6,
3167 © 1997 The American Physical Society
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3168 56MOURZENKO, GALAMAY, THOVERT, AND ADLER
elastic solid and the local displacements are obtained
solving the basic equations of elastostatics. The flow thro
the fracture is derived from the Stokes equations; the per
abilities of the initial and of the deformed fractures are eas
obtained by calculating the average flow rate.

Three types of fractures are addressed in this pape
simple deterministic case is studied for comparison purpo
Two random fractures are generated with a Gaussian di
bution of the surface heights; these heights are correlate
the fracture plane either by a Gaussian or by a self-af
correlation.

Section III is devoted to a mean field analysis of the d
formation of the fracture surfaces. The basic element of
analysis is a classical lubrication-type formula~cf. Landau
and Lifshitz @10#!, which gives the deformation of a soli
half space when the distribution of the surface stresse
known. A mean field approximation of the stress distributi
enables the calculation of the fracture closure and of
normal joint stiffness in the linear and the nonlinear regim

Since realistic stochastic models of fractures are e
ployed and no approximation is used in the calculation
deformations and flow, numerical tools are necessarily e
ployed. All the relevant details and the range of parame
studied are given in Sec. IV. Such a direct treatment of
physical situation has never been done to the best of
knowledge.

Section V presents the variations of fracture closure w
applied normal loadP. The evolution of the local fracture
apertureb with the loadP is for a Gaussian fracture; it i
shown that the deformation field is almost uniform for sm
contact areasSc . Then, the variation of the mean apertu
with P is presented; the new contacts are shown to sign
cantly influence the evolution of the aperture. The norm
stiffness is analyzed as a function of the fractional cont
areaSc . A satisfactory agreement with the predictions of t
mean field theory and available experimental data is
tained.

The variations of the fracture permeability with norm
stress are discussed in Sec. VI. The dependence of the
draulic aperture uponP is similar to the mechanical prope
ties. The hydraulic and mean aperture data approxima
verify a linear relation. The comparison with experimen
data is satisfactory. Some concluding remarks end this pa

II. GENERAL

A. General description

Consider two semi-infinite pieces of rocks that are p
tially in contact on an almost plane surface; this situation
depicted in Fig. 1; the fracture is the void volume betwe
the two solid half spaces. A fluid is flowing through th
fracture. Suppose now that external forces are exerted
these two rocks in order to produce a uniform pressureP at
an infinite distance of the fracture. The two rocks are m
eled as perfectly elastic solids. Because of this external p
sure, they will undergo deformation and the shape of
fracture will be modified. The new geometry of the fractu
will influence the flow and subsequently the permeability
the fracture.

The two surfaces of a fracture are described by the hei
z5h6(x,y) above an arbitrary reference planez50 ~Fig. 1!.
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The apertureb of a fracture is the difference betweenh1 and
h2 when it is non-negative

b5 Hw,
0,

w>0
w,0, ~1!

w5h12h2.

When w is negative, the surfaces are considered to be
contact andh15h250.

The closure of a fracture under normal load can be
fined in the following way. In experimental studies, a un
form normal load is exerted on a fractured sample, and lo
displacements are measured. In order to reduce effect
nonuniform loading, the averages of several strain gauge
puts are taken. The mean closure of a fracture is dire
measured by linear variable displacement transduc
~LVDT !, which are located close to the fracture@11# or com-
puted by subtracting the deformation of the solid sam
from the deformation of the part of the sample containing
fracture@6#. Then, the closure of a fracture is defined as
mean difference between the displacements of each frac
surface

V5^Dh12Dh2&. ~2!

It can be shown from Eqs.~1! and~2! that the closureV may
be expressed as

V5^bin&2^b&, ~3!

FIG. 1. Conventions and notations for the fracture geome
Only one unit cell is displayed in~a! and two in~b!.
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56 3169FRACTURE DEFORMATION AND INFLUENCE ON . . .
wherebin is the initial aperture of the fracture. The avera
value ^b& is calculated over the total area of the fractu
projection.

This definition is used in the present work though oth
definitions are possible~cf., for instance, Unger and Mas
@9#!. A uniform normal loadP ~i.e., a force per unit surface!
is applied at an infinite distance of the fracture to both so
half spaces. The total displacementsd are calculated for each
value ofP by solving the elastostatic equations; it is impo
tant to notice that the local stresses are neither uniform,
normal close to the fracture surface. The closureV is de-
duced from Eq.~3!, and the geometrical evolution of th
void volume is characterized.

Once the deformation of the fracture is determined a
function of the loadP, the permeability of the fracture has t
be estimated. The hydraulic properties of the fractures
characterized by the Stokes permeabilityBS and the hydrau-
lic aperture of the fracturebS . The Stokes permeability ten
sor BS is defined by the equation

Q̄S52
1

m
BS•¹p, ~4!

whereQ̄S is the mean flow rate per unit fracture width,m the
fluid viscosity, and¹p the macroscopic pressure gradie
When the fracture is isotropic,BS reduces toBSI whereI is
the two-dimensional unit tensor. The permeabilityBS is de-
rived from the solution of the Stokes equations, which
described in Sec. II C. For isotropic fractures, the hydrau
aperturebS is defined as

bS5~12BS!1/3. ~5!

In real fractures that contain an incompressible fluid,
deformation of the matrix may be considered as the resu
the equilibrium between the applied normal stresses and
fluid pressure acting on the fracture surfaces. In most ca
the variations of the fluid pressure along the fracture pl
are negligible compared to the mean pressure acting on
surfaces. Hence, the deformations can be calculated for
effective normal load, which is the difference between
real applied load and the mean fluid pressure in the fract
Therefore, the mechanical and hydraulic behaviors of
fracture are considered separately; this means that the
matrix displacements under the applied loadP are calculated
without taking into account the fluid pressure in the fractu

Thus, the stress strain behavior of a fracture embedde
an elastic solid matrix is studied in terms of the appli
normal loadP and of the fracture closureV.

Before this general presentation is concluded, the follo
ing limitation should be emphasized. The deformations
the solid matrix are determined by the linear elasticity the
where only small deformationsd can be studied. WhenP
increases,d increases linearly. For some critical valuePc ,
opposite surfaces of the fracture eventually touch each o
and some new contact zone appears. This new contact sh
be taken into account in the calculation of the displacem
field for P.Pc ; hence, the initial fracture geometry shou
be modified and a new displacement field calculated.

The general equations that govern the physical situa
depicted in Fig. 1 will be presented in the rest of this secti
r
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As a general rule, in the numerical calculations, the spac
replaced by a three-dimensional unit cell centered around
mean fracture plane; spatially periodic boundary conditio
are imposed on the two lateral boundaries parallel to thex-z
andy-z planes and denoted by]t0 in Fig. 1.

For the sake of clarity, the numerical method of soluti
is postponed to Sec. IV.

B. Deformation model

The solid matrix in which the fracture is embedded
supposed to be perfectly elastic. The equations that gov
the elastic behavior of the material are the basic equation
elastostatics. Lets denote the stress tensor; in the absence
any external volumetric force, the equilibrium equation rea
as

“•s50. ~6a!

The strain tensore is expressed in terms of the displaceme
d,

e5@¹d1~¹d! t#/2, ~6b!

where the superscriptt denotes the transposition operato
Only isotropic solid matrices are considered here. Hence,
stress tensor is given by

s5 l tre•I12me, ~6c!

wherel andm are the familiar Lame´ coefficients. For future
use, the Young modulusE5(3l 12m)m/( l 1m) and the
Poisson ration5 l /2(l 1m) can be defined.

These equations have to be supplemented with boun
conditions at the free fracture surfacesSp . Let us simply
assume that no external force is exerted at this interf
whose unit normal isn:

s•n50 on Sp . ~6d!

Equivalently, the equilibrium equation can be expressed
terms of the displacementd,

~ l 1m!¹~“•d!1m¹2d50 ~7a!

together with the condition of no stress at the boundarySp of
the solid phase

$m@¹d1~¹d! t#1 l ~“•d!I %•n50, s•n50 on Sp .
~7b!

Periodic conditions are applied on the vertical boundar
]t0 of the unit cell of the periodic system. Far from th
fracture plane, a uniform fixed normal loadP is applied:

szz52P, z→6`. ~8!

When the fracture surfaces touch one another, they
assumed to be cemented and the stress and strain are
tinuous at the contact surfaceSpc :

s15s2, d15d2 on Spc ~9!
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When the elastic problem is solved, the mean aperture^b&
and the fracture closureV are easily calculated as function
of the normal loadP. The normal joint stiffness can be de
fined as@12#

k5
dP

dV
. ~10!

The normal joint stiffness is widely used to describe t
behavior of fractures under load and can be measured in
laboratory@13–15#.

C. Fluid flow model

For each value of the loadP, the geometry of the fracture
void volume can be determined and the mean permeab
a
d

-

od
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he

ty

BS calculated by numerically solving the Navier-Stok
equations in the low Reynolds number limit as done
Mourzenkoet al. @16#.

The analysis of Stokes flow is very similar to that ma
for three-dimensional porous media~cf. Adler @17#!. Con-
sider an infinite fracture made of identical unit cells of si
L3L in thex-y plane. The low Reynolds number flow of a
incompressible Newtonian fluid through a fracture is go
erned by the usual three-dimensional~3D! Stokes equations

¹p5m¹2v, “•v50, ~11!

wherev, p, andm are the velocity, pressure, and viscosity
the fluid, respectively. In general,v satisfies the conditions
v50 on the total surfaceS of the fracture ~12a!

and

v is spatially periodic with periodL in the plane of the fracture ~12b!
nce,
ce.
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This system of equations and conditions applies locally
each pointr of the interstitial fluid. In addition, it is assume
that the macroscopic pressure gradient¹p is specified;

¹p5
1

t l
E

]t0

p ds5~a prescribed constant vector!,

~13!

wheret l is the volume of the fracture;t l is bounded by the
two solid surfacesSp and the vertical boundary of the frac
tion Sv l of the unit cell in the fracture volume, so that]t l

5Sv løSp ~see Fig. 1!. The mean flow rateQS per unit frac-
ture width may be defined as

Q̄S5
1

S* E
t l

v d3r , ~14!

whereS* is the area of thex-y projection ofSp andSpc . Q̄S

is linearly related to the pressure gradient¹p by the Stokes
permeability tensorBS by the classical relation~4!. Further
details on some technical points such as the spatially peri
boundary conditions can be found in Ref.@17#.

D. Description of fractures

The two surfaces of the fracture are described by
heightsz5h6(x,y) above an arbitrary reference planez50
~Fig. 1!. Usually,h6 are random functions; they can be cha
acterized by the two probability densitiesw(Z) andw(w) of
the mean surfaceZ5(h11h2)/2 and of the distancew
5h12h2, which are often assumed to be Gaussian,

w~F !5
1

A2psF

expS 2
~F2^F&!2

2sF
2 D , F5Z,w,h,

~15!
t

ic

e

where sF
2 denotes the varianceŠ(F2^F&)2

‹; the angular
brackets correspond to the statistical average. For insta
sh denotes the root-mean-square roughness of the surfa

The apertureb of the fracture is defined by Eq.~1! and
may be described by its mean^b& and its variancesb

2, which
are generally not equal to the mean separationbm5^w& and
to sw

2 , respectively; of course, the differences between th
values is due to the partial overlap of the fractures~cf.
Mourzenkoet al. @18#!. Whenw is negative, the surfaces ar
considered to be in contact and one hash15h25Z.

A series of fractures is obtained with the same fieldsh6,
but differentbm . For some values ofbm , the initial separa-
tion w becomes negative and such zones correspond to in
contacts between the two fracture surfaces. In the ini
state, which is characterized byh6 and bm , the fracture is
considered to be in equilibrium. The deformation of the so
matrices is described by the incrementsdh6.

The statistical properties of the fracture in thex-y plane
can be characterized by the spatial correlations of the fie
h1 andh2, which are described by the covariance functio
CZ(r ) andCw(r ):

CF~r !5Š$F~x,y!2^F&%$F~x1Dx,y1Dy!2^F&%‹,
~16!

r 5ADx21Dy2, F5Z,w.

Two types of random fractures will be addressed in t
paper, namely, Gaussian and self-affine fractures. For
so-called Gaussian fractures, all the quantitiesh1, h2, Z,
andw were described by the quadratic covariance functio

CF~r !5sF
2expF2S r

l F
D 2G , ~17!

wherel F is the correlation length of the fieldF.
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56 3171FRACTURE DEFORMATION AND INFLUENCE ON . . .
Self-affine fractures were also used since there exist m
experimental observations where the self-affine characte
rock surfaces is demonstrated@5#. Self-affine surfaces hav
features over a broad range of characteristic length sc
and can be described by the covariance

Ch~r !5sh
2F12S r

l D
2zG , ~18!

wherel is a characteristic length andz is the roughness ex
ponent that was found to be 0.8760.07 @19,20#.

Finally, the upper and lower surfaces can be either co
lated or not correlated. The correlation between the two s
faces is characterized by the correlation parameteru51
2sw

2 /2sh
2, which is 0 for uncorrelated surfaces and 1 f

fully correlated surfaces. Hence, all the possible situati
can be described by the nature of the correlation in thex-y
plane and by the three parametersbm /sh , l /sh , andu; this
is equivalent to consideringsh as the length unit.

III. A MEAN FIELD ANALYSIS

In order to perform a first application of the set of equ
tions that govern the phenomenon and provide a theore
basis for the analysis of the numerical results relative to fr
ture compression, a simple deformation model has been
veloped.

Recall that in the initial state (P50), the solid may be
already strained, since a stress field and a displacement
with respect to a rest state where the fracture surfaces
totally separated may exist. In such a case, the solid is
sumed to be everywhere in its elastic domain and the lin
elasticity theory applies. Therefore, these initial stresses
strains may be ignored, and the additional displacemend
resulting from an additional normal loadP is determined
from Eqs.~7!–~9!.

The following derivation approximates the thre
dimensional character of the problem at hand by usin
lubrication approximation. Basically, the deformation of t
fracture surfaces with respect to their initial profile is eva
ated by assuming that the initial fracture surfaces are alm
plane and remain so under the loadP, and that the surface
displacementsdh are normal to this plane. This leads to
mixed boundary value problem, where zero stress is impo
on the open zones of the fracture surface and zero displ
ment is imposed in the contact zones~assuming that the frac
ture is symmetric!. The normal stressPcs in the contact sur-
face is not uniform and must satisfy the overall equilibriu
condition @Fig. 2~a!#:

E
Sc

E Pcs~r !d2r5STP, ~19a!

whereST and Sc are the total area of the fracture and t
area of the contact zone, respectively.

This problem will be simplified further by assuming th
Pcs is uniform overSc ; it should be noticed that this as
sumption is only a mean field approximation, which is t
simplest possible estimate ofPcs ; it does not mean that th
deformation is plastic over the contact zone. The condit
~19.a! yields
ny
of
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Pcs5
ST

Sc
P. ~19b!

The problem reduces to a Neumann problem~in terms of the
displacements!, with a stepwise distribution of stresses o
the fracture surfaces 0 andPcs in the noncontact and contac
zones, respectively@Fig. 2~b!#. Obviously, this approxima-
tion is only valid forSc!ST . If the contact zones are ver
small, the normal stresses onSc act as point forces on the
fracture surfaces, and their exact distribution has little infl
ence.

Finally, note that the deformation of a fracture surface c
be evaluated by shifting the stress conditions on the sur
and at infinity by2P. Each solid block is viewed as a sem
infinite half space, undergoing a pressurePcs2P in Sc and a
tensionP in ST2Sc @Fig. 2~c!#. Since the overall position o
the fracture surface has been allowed to drift when the ze
displacement condition was replaced by a stress condition
Sc , the deformation of the surface has to be taken relativ
the new positiondh̄c of the contact zones in order to evalu
ate the closure of the fracture@Fig. 2~d!#, which is given by

V5
2

ST
EE

ST

@dh~r !2dh̄c#d
2r

5
2

ST
EE

ST2Sc

@dh~r !2dh̄c#d
2r . ~20!

The factor 2 corresponds to the contributions of both s
faces to the closure. Sincedh is not uniform onSc , dh̄c is
defined as its average:

dh̄c5
1

Sc
EE

Sc

dh~r !d2r . ~21!

The displacement of the surfacedh can be easily calculated
by the surface integral@10#

dh~x!5
12n2

pE EE
ST

P~r !d2r

ur2xu
. ~22!

FIG. 2. Mean field analysis of the deformation of the fractu
surfaces under a loadP: ~a! distribution of the normal stressPc in
the contact surface;~b! reduction of the mixed boundary valu
problem to a Neumann problem;~c! shift of the stress conditions
~d! evaluation of the new position of the contact surface.
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Equivalently, with Eq.~19b!,

dh~x!5
12n2

pE
PH EE

ST2Sc

d2r

ur2xu
2

ST2Sc

Sc
EE

Sc

d2r

ur2xuJ ,

~23!

wheren is the Poisson ratio andE the Young modulus.
We introduce the contact functionSc ~r !:

Zc~r !5 H1,
0,

rPSc

r¹Sc
. ~24!

Using Eqs.~24!, ~19b!, and~22! dh(x) can be written as

dh~x!5
12n2

pE
P

1

Sc
EE

ST

~ Z̄c2Zc!
d2r

ur2xu
,

Z̄c5
1

ST
EE

ST

Zc d2r , ~25!

whereSc5Z̄c is the fractional contact area, since it repr
sents the fraction of the total areaST of the fracture corre-
sponding to the contact area. This expression can be us
the expression~20! of the closure; ifSc(r ) is a random sta-
tionary isotropic field and ifST is large enough that the
ergodicity hypothesis can be used, the surface integrals
be expressed in terms of the correlation lengthL of the nor-
malized covarianceRc(t) of the random fieldSc(r ):

L5E
0

1`

Rc~ t !dt. ~26!

If L is finite, which is generally true for random fracture
without long-range order, the closure is obtained as

V5
4~12n2!

E

12Sc

Sc
PL. ~27!

The normal joint stiffnessk defined by Eq.~10! can be
subsequently expressed as

k5
E

4~12n2!L
Sc

12Sc
. ~28!

In the case of fracture surfaces with normally distribut
random heights, the fractional contact areaSc and the corre-
lation lengthL can be determined whenbm /sh and the co-
varianceCw(t) are known. The stiffnessk is evaluated in the
Appendix for fractures with Gaussian and self-affine cor
lations @Eqs. ~A9! and ~A10!#. Limiting expressions for
bm /sh→0 or ` are also provided in the Appendix.

This analysis can be tentatively extended to the nonlin
domain where new contact zones appear. Such a phen
enon occurs at the border of the initial contact; if the tw
fractures are tangent, this phenomenon occurs immedia
as in the classical Herz theory between two spheres@10#. The
relation~27! can be differentiated with respect toP with the
help of Eq.~3! to yield
-

in

an

-

ar
m-

ly

dP

d^b&
52

E

4~12n2!L
Sc

12Sc
52k. ~29!

Suppose that the heights remain normally distributed w
the samesh . Because of ergodicity, the mean aperture^b&
and the fractional contact areaSc are related to the mea
separationbm by

Sc5
1

2 H 12erfS bm

2sh
D J , ~30!

^b&5~12Sc!bm1
sh

Ap
expS 2

bm
2

4sh
2D , ~31!

where erf denotes the classical error function. Introduction
Eqs.~30!, ~31!, and~A9! into Eq. ~29! yields

dP

dbm
52

E

4~12n2!l

Sc
2

Ct~Sc!~12Sc!
, t5G,s, ~32!

whereCt is defined by Eq.~A10!.
The closed system~30! and~32! is the basis of a nonlinea

analysis of the fracture closure for smallSc . A full descrip-
tion of the hydromechanical behavior of fractures require
relation betweenbS5(12BS)1/3 and the geometrical param
etersbm /sh and l /sh . The numerical results of Mourzenk
et al. @16# can provide such a dependence. Moreover,
system~30!, ~32! and the formulas~3!, ~28!, ~31! provide a
stress-closure relation and the dependence of the stiffnek
uponP.

Figure 3 shows the results obtained by using the nonlin
theory~28!, ~30!, ~32! for Gaussian and self-affine fracture
The stress-closure curves are presented in Fig. 3~a!. One can
see that the deformation history of the fractures is influen
by the spatial correlations of surface profiles.

The normal loadP is a decreasing function of the apertu
bm /sh . However, with the Gaussian fracture surface hei
distribution~15!, P50 is obtained only for infinite aperture
since contact zones remain for any finite value ofbm . The
decay rate ofP in a real fracture depends on the tail of th
height distribution function, which may be inaccurately re
resented by a Gaussian distribution. This illustrates the
ficulty to define a hypothetical rest state for a prestrain
fracture.

Therefore, a stiffness-to-contact area or stiffness-
normal load relationship might be preferred for comparis
purposes to the load-to-aperture one. Figure 3~b! shows the
dimensionless stiffnessksh /E as a function of the norma
load P/E. Quasilinear relations are obtained forP/E
.1023, i.e., for moderate aperturesbm /sh<3.5– 4. This
character agrees with the results for uncorrelated fractu
@14,20#. Further comparisons with experimental data will
commented on in Sec. V D.

IV. GEOMETRIC PARAMETERS AND NUMERICAL
METHODOLOGY

This section provides the major numerical ingredie
necessary to calculate the deformations of a fracture sub
ted to a normal load and the resulting permeability chang
Computations will be performed on a finite volume, which
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discretized intoNc3Nc3Ncz elementary cubes of sizea @cf.
Fig. 5~a!#, spatially periodic boundary conditions are gen
ally used in thex-y plane. The elementary cubes are eith
solid or liquid. The mesh spacing inside these cubes
fraction 1/n of a; it is the same in all three directions, bu
may be different in the liquid and the solid phases.

A. Geometric parameters of the initial fractures

A first simple deterministic model~hereafter referred to a
M !, which is called the step fracture model@Figs. 4~a! and
4~b!# is used in order to study the elastic compression of t
regular surfaces that are initially in contact withSc50.25.
The asperity is a parallelepipedon of heighta, with a square
basis of sidel 55a; the size of the unit cell isL510a. This
yields equivalent average ratiosbm /sh52) and sh /a
5)/4. The ratio of horizontal and vertical asperity sca
@cf. Fig. 4~a!# l /sh520/)'12. Three samples with variou
heightsHs were studied~see Table I! in order to analyze the
influence of this parameter.

FIG. 3. ~a! Variations of the normal loadP/E as a function of
bm /sh during a fracture closure as predicted by the mean fi
theory. Data are for Gaussian fractures~solid lines! with l /sh51
and 2 and for a self-affine fracture~dashed line! with z50.5, l /sh

56. ~b! The dimensionless fracture stiffnessksh /E as a function of
P/E. The dotted lines are Yoshioka and Scholz’s@26# measure-
ments for ‘‘rough’’ ~* ! and ‘‘smooth’’ ~3! surfaces. The dash
dotted line corresponds to the data of Durham and Bonner@27#. The
open circles are the data of Boitnott and Scholz@31# for ground
optical glass and the solid circles are the measurements of Eng
and Scholz@30# in Cheshire quarzite.
-
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The random fieldsZ and w for the Gaussian and self-
affine fractures are generated by the method of Fourier tra
forms ~see Ref.@17# for details! on the Nc3Nc numerical
grid in thex-y plane with elementary surfaces of sizea.

As a matter of fact, only uncorrelated surfaces withu
50 were addressed in this work for the sake of simplicit
However, this is not a limitation inherent to our methodolog
and correlated surfaces can be dealt with. Note that
lengthNca is much larger than any correlation or characte
istic length of the fracture surfaces.

Four Gaussian fractures were obtained with the same r
dom surfaces, but various separationsbm . The correlation
distance l /sh was set equal to 2, and the sample siz
L/ l'4 in order to minimize statistical errors~see Fig. 4!. The
mean separationbm /sh varies between 0.25 and 1; therefore
the fractional contact areaSc varies between 0.444 and 0.12
~see Table I!. Each fracture is denoted byGbm

/sh . These

values ofSc were found in various experiments of fractur
compression@3,14,22#.

Three self-affine fractures were generated withz50.5 and
bm /sh50.5, 1, and 1.5~cf. Fig. 4!. Again they are denoted
by Sbm

/sh . Because spatially periodic fractures are gene

d

der

FIG. 4. The simulated fracture profiles@~a!, ~c!, and ~e!# and
aperture distributions@~b!, ~d! and ~f!# for the three fracture geom-
etry models. Six levels of shadings are distinguished from ze
~white! to the largest value~dark! of the aperture. The shading step
are equal to 0.8sh . Data are forHs51.25l , bm /sh53.46 for the
step fracture~a!, ~b!, Hs51.82l , bm /sh50.5, l /sh52 for the
Gaussian fracture~c!, ~d!, and Hs50.92l , bm /sh51, l /sh56, z
50.5 ~e!,~f! for the self-affine fracture.
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TABLE I. Geometrical parameters of fractures.l is equal to the horizontal size of the asperity for the s
fracture model and to half the size of the sample for the self-affine fractures. The index forG andS stands
for the value ofbm /sh .

Sample
name

sh

a

l

sh

bm

sh

L

sh

^b&
sh Sc

Hs

l

Step fracture model
M6 0.433 11.6 3.46 22.6 3.46 0.25 0.45
M10 0.433 11.6 3.46 22.6 3.46 0.25 0.85
M14 0.433 11.6 3.46 22.6 3.46 0.25 1.25

Gaussian fractures
G1/4 3.03 2 0.25 7.92 0.472 0.444 1.86
G1/2 3.03 2 0.5 7.92 0.649 0.311 1.82
G3/4 3.03 2 0.75 7.92 0.858 0.196 1.77
G1 3.03 2 1.0 7.92 1.075 0.125 1.71

Self-affine fractures
S1/2 2 6 0.5 12 0.951 0.315 0.96
S1 2 6 1.0 12 1.359 0.180 0.92
S3/2 2 6 1.5 12 1.805 0.100 0.88
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ated, the covariance~18! describes the surface height corr
lations only for distances smaller thanL/2 and the character
istic length l in Eq. ~18! is chosen to be equal toL/2. The
corresponding geometric parameters are presented in Ta

Further details on the generation of random fractures
be found in Mourzenkoet al. @18#.

B. Computations of deformations

Deformations are obtained by solving the system of eq
tions ~6!, ~8!, ~9!. However, it should be noticed that th
overall conditions~8! cannot be perfectly achieved neither
real experiments nor in numerical models and should be
placed by approximate conditions on two planes located
some distanceHs from the mean plane of the fracture su
faces~see Fig. 1!:

szz52P on SH
6 . ~33!

The system of equations~6!, ~8!, ~9! is solved via a
second-order finite difference formulation. It is first di
cretized by means of the finite volume method in terms
the unknown displacementsd. Details are given in Ref.@23#.
It should be noticed that each elementary cubea is subdi-
vided inton3 elements wheren is at least equal to 3, so tha
the order of the method is equal to two. The resulting lin
system is solved by using a conjugate gradient method w
a precisionD r of the order of 1022.

Once the fieldd is determined, the new positionh6

1dh6 of the fracture surfaces can be derived. Consider
elementary solid cubeC1 of sizea/n whose faceDS belongs
to the fracture surface@Fig. 5~a!#. The normal displacemen
dh of DS is equal to

dh5n•dS5n•S d1
a

2n
n•¹dD , ~34!

wheren is the unit normal ofDS oriented fromC1 to the
neighboring void cubeC2 , dS the displacement ofDS.
e I.
n
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Equation ~34! provides the valuesdh of the local normal
displacements which linearly depend upon the normal lo
P. In order to obtain a discrete representation of the modifi
geometry of the fracture space, the following algorithm
proposed. The solid fraction«S in the neighboring elemen
tary liquid cubeC2 because of the displacement ofDS @Fig.
5~b!# is readily derived from Eq.~34! as

«S5
1

a3 EE
DS

dhds5
n

a
dh. ~35!

FIG. 5. ~a! Position of the fracture surface in the mesh. The s
of the elementary cube isa, the fraction factorn53. The solid
phase is shadowed.~b! The solid fraction«S in the elementary cube
C2 after the displacement of the faceDS of the fracture surface.~c!
Position of the fracture surface in the deformed state. The new s
cubes are denoted by the darkest shadowing.
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This procedure can be applied to all the solid faces ofC2 .
When «S is larger than a threshold«S* , which is generally
equal to 0.5, the liquid cube is changed into solid and
fracture geometry is modified accordingly. This procedure
performed for all the cubesCk that possess one face or mo
on the fracture surface@Fig. 5~c!#.

The first limitation of this approximation is the possib
appearance of new contact zones. Any change in the con
area is not accounted for by the system~6!, ~8!, ~9!. Should
the two surfaces of the fracture touch each other for so
valuePc , the system~6!, ~8!, ~9! has to be solved again fo
this new geometry. Otherwise, the extension of the calc
tions for P.Pc would implicitly assume that the two sur
faces may freely overlap. This point will be taken into a
count in Sec. V.

The second limitation is due to the boundary conditi
~8!. Displacements onSH

6 are not uniform, because of th
finite distance from the fracture. In order to estimate
error, the standard deviationsd

6 of the displacements on
SH

6 is calculated as

sd
65Š~dz

6!22^dz
6&2

‹

1/2. ~36!

The angular brackets denote here the average over the
ture projection.Hs can be considered as sufficient wh
sd

6/^dz
6& is small.

The influence ofHs on the results was checked as fo
lows. Table II contains the standard deviation ofsd

6 of the
displacements ofSH

1 and SH
2 calculated by using Eq.~36!.

The error induced by the finite sample height for the s
fracture is a decreasing function ofHs / l . For modelM , the
residual fluctuationsd

6/^dz
6& is 0.15 and 0.05 forHs / l

50.85 and 1.25, respectively. Random fractures req
larger heights. For Gaussian fractures, a residue 0.10 is
tained forHs'2l .

C. Computations of the flow

The Stokes equations~11! are solved by the so-called a
tificial compressibility method with a multigrid algorithm
~cf. Ref. @16#!. Convergence was reached when the flow r
was found the same within 1% across the various section
the medium.

A 72372372 mesh was used for most realizations. T
size of the elementary cubea was usually equal to 0.3sh for
Gaussian fractures and 0.5sh for self-affine ones, and in the
refined mesh the steps were 0.1sh and 0.17sh , respectively.
This discretization is small enough for a good representa
of the vertical variations of the surface profiles.

TABLE II. The standard deviationsd6 of the displacements on
upper and lower boundaries of the samples.

M6 M10 M14 G1/2 G1

Hs / l 0.45 0.85 1.25 1.82 1.71
sd2 /^dz

2& 0.462 0.151 0.048 0.122 0.08
sd1 /^dz

1& 0.462 0.151 0.048 0.094 0.128
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D. Summary of the numerical modeling

It might be useful to the reader to have a summary of
numerical modeling as schematized in Fig. 6.

For each fracture, two random correlated surfaces
generated on a two-dimensional mesh with a step sizea.
Then, the fracture volume and enclosing solid matrices
subdivided into elementary cubic blocks with the same s
a. Then, the displacement vectord is calculated for an arbi-
trary load; since a stress has the same dimension as
Young modulusE, P was chosen equal toE. Recall that the
order of the method is equal to 2 forn53. On an IBM 560
workstation, this computation lasts for about 100 h, with
memory size of 100 Mbytes for a 72372372 grid.

Thanks to linearity, the deformationd(P) under any load
P can be obtained by

d~P!5P/E d~E!. ~37!

The new geometry of the fracture can be derived from E
~34! and various parameters are estimated, such as the m
fracture aperture, the contact area and the permeability.
computation lasts for about 1 h.

The value ofP is increased and the calculation ofd is
repeated, if new contacts do not appear in the previous
~see Fig. 6!. If new contact zones exist for some valuePc ,
the modified fracture geometry is used as a new initial s
for the calculation of a new displacement fieldd(Pc1E).

In order to restart the numerical solution of Eq.~7!, the
modified fracture geometry atPc has to be rediscretized o
the coarser initial mesh with elementary cube sizea; other-
wise the fine mesh should be divided byn53 again to keep
the deformation accurate at the second order. The error
duced by this coarsening will be discussed in Sec. V A.

V. RESULTS ON FRACTURE CLOSURE
AND NORMAL STIFFNESS

A. Local evolution of the fracture

In order to illustrate the evolution of the fracture apertu
b with increasing normal loadP/E, the Gaussian fracture
G1 is chosen.

FIG. 6. Scheme of the numerical modeling of the fracture c
sure under the normal load.
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Two factors contribute to the increase of the fraction
contact areaSc during the fracture closure, namely, th
growth of the contact area near the contacting tips of surfa
asperities, and the appearance of new contacts. The first
tor provides an almost continuous increase ofSc with P,
which was observed in experiments by Gentier@11#. It is
obvious that this behavior cannot be reproduced with a d
cretized representation of the fracture geometry, because
surface features are rectangular with a minimal size equa
a/n. Hence, the growth of the initial contact area is nume
cally modeled here as a stepwise process with the sud
appearance of new contacts near old ones.

Second, the critical valuePc , at which opposite surfaces
of the fracture touch each other at some new contact zone
determined as explained in Sec. IV. Then, the aperture fi
b is obtained for three successive valuesP5Pc/3, 2Pc/3,
and Pc . Figure 7~a1! shows the initial aperture fieldbin of
the fractureG1 and Fig. 7~a2,3,4! shows the differencebin
2b for these values ofP. One can see from Fig. 7 that the
deformation field is closely related to the initial aperture fie
of the fracture; the largest deformations are in the zones w
largest bin and the smallest ones are near contact zon
wherebin is minimal.

It can be observed in Fig. 7~a4! that the deformation field
at P5Pc is almost uniform. This means that the modifie
fracture geometry may be approximated by reducing the

FIG. 7. Aperture distributions. The three columns~a!, ~b!, ~c!
refer to fracturesG1 , L2 , andL3 , respectively. The initial aperture
bin is given in Eq.~1! with shading steps equal to 0.9sh . The
differencebin2b for three successive loads is given in~2!–~4! with
gray levels ranging from white~zero! to black@maximal closure in
~4!#. The aperture distributions inG1 , L1 , L2 , L3 at P/E50.071
are given in the last column~d!, with shading steps equal to
0.35sn .
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cal fracture apertureb by the closure valueDV. A detailed
analysis of the evolution of the aperture field showed thad
was less uniform forbm /sh<0.5. This means that for sma
Sc ~or largebm /sh!, the fracture surface heights remain no
mally distributed, which is important for the validity of th
nonlinear theory given by Eq.~30! and ~32!.

Large deformations@Figs. 7~b! and 7~c!#, after the appear-
ance of new contact zones, were addressed using the sc
presented in Sect. IV B and IV C. For normal loadsP larger
than Pc , new fracture geometries, referred to asL1 and
L2 , are defined. The new geometryL2 is taken atP/E
50.012.Pc /E, at which several new contacts appeared.
order to restart the calculation procedure, the discreti
fracture geometry should be coarsened back to the for
(24)3 grid. The error induced by this coarsening can be
lustrated by the fact that the contact areaSc and the mean
aperture^b& calculated on the finer grid are equal to 0.1
and 2.54a, while on the coarse one they are equal to 0
and 2.76a, respectively.

The caseL1 corresponds to the modified geometry
G1 at P51.5Pc with the initial aperturê b&52.47a on the
coarse grid and̂b&52.44a on the fine one. The two con
figurationsL1 andL2 are compared here, because they re
resent two possible choices ofP/E for the modified geom-
etry; L1 is constructed with minimal loss in̂b&, regardless
of the losses inSc when the coarsening is performed, whi
L2 is constructed so that botĥb& and Sc would not be
changed significantly during the coarsening@cf. Figs. 8 and
9~b!#. Note thatL2 is taken at the beginning of a platea
which follows an abrupt increase of the contact area~Fig. 8!.

Figure 7~b! shows the evolution of the apertureb as a
function of P/E for the fractureG1 with a geometry, modi-
fied at P/E50.012 (L2). Finally, a third geometryL3 is
defined from the deformed state ofL2 at P/E50.0415. Its
deformations under further loads are presented in Fig. 7~c!.
The comparison of the aperture fields shows that new c
tacts appear near former contact zones in regions of s
b. For large P/E, the displacement fieldd becomes less
uniform than forP/E50 @Figs. 7~a4! and 7~b4!#.

Figure 7~d! presents the aperture distributions for all co
figurations,G1 ,L1 ,L2 ,L3 , for the sameP/E50.071, which
corresponds to the critical loadPc for L3 . Comparison
shows that the new contacts that appear during the frac

FIG. 8. The fractional void areaS0 as a function ofP/E for all
fractures. Data are for Gaussian fractures~solid lines!, self-affine
fractures~dashed lines!, step fracture~dashed-dotted line!, modified
Gaussian~dotted lines!.
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closure substantially influence the deformation process.
new contacts, which are accounted for inL1 ,L2 ,L3 , rigidify
the fracture, and give lesser closures. The most signific
difference is observed between the configurationsG1 and
L3 . In the case ofG1 , fracture surfaces overlap on an ar
larger than half of the cell size; the aperture is substanti
reduced.

The evolution of the fractional void areaS0512Sc of the
fracture is presented in Fig. 8 for all the models and for
successive states ofG1 . The critical loadPc /E at which new
contacts appear is a decreasing function of the initial con
surfaceS0 ; this can be explained by the larger rigidity o
fractures with smallS0 . The initial plateaus in Fig. 8 becom
larger whenS0 is decreased for fractures with modified g
ometries derived fromG1 .

B. Evolution of the mean aperture

The mean fracture aperturêb& is calculated at various
normal loadsP in two different ways. First, for each give
load P, the modified fracture geometry is reconstructed o
discrete grid and the mean aperture^b& is calculated as the
number of liquid cubes divided by the total fracture are
This method will be referred to as the discrete method. S
ond, the continuous method employs the values of«S given

FIG. 9. The relative mean fracture aperture^b&/^bin& as a func-
tion of P/E for all fractures~a! and for the sampleG1 ~b!. The
dotted lines represent̂b&/^bin& obtained by the discrete method
The other lines with the same notation as in Fig. 8 represent the
obtained by the continuous method. The vertical arrows indicate
critical loadsPc .
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by Eq. ~35!. The mean aperturêb& is calculated as the sum
of (12«S)a3 over the sample divided by the fracture area

The curves for̂ b& obtained by the discrete method e
hibit a stepwise behavior in contrast with the continuo
method. Figure 9 showŝb&/^bin& versusP/E, obtained by
both methods; the difference between them illustrates
error induced by the discretization of the initial fracture g
ometry.

^b& is always found to be a decreasing function ofP/E,
as physically expected. The variations of^b&/^bin& become
more important when the mean separationbm /sh of the frac-
ture increases, as can be seen for all random fractures in
9; this means that̂b&/^bin&uP/E2^b&/^bin&uP/E50 is an in-
creasing function ofbm /sh . At large bm /sh , i.e., for Sc
!1, the deformation of surface asperities and of the so
matrix near the fracture dominates and the decrease
^b&/^bin& is substantial. For smallbm /sh and largeSc , the
deformation of the solid above and below the fracture do
nates and̂b&/^bin& decreases slowly withP/E.

All curves in Fig. 9 show a nonlinear behavior whe
P/E increases, though the decrementsdh6 of fracture sur-
faces, as well as the displacementd, are linear functions of
P. The nonlinearity results from upper and lower surfa
overlaps, withb set to 0. Arrows in Fig. 9 show the critica
normal loadPc /E at which new contacts appear. A ver
small nonlinearity forP.Pc is visible on the numerical data
for the step fracture model, which is caused by the s
overlap of vertical and horizontal parts of fracture surfac
At P.Pc , the calculation of fracture closureV is not valid
and the use of the modified fracture geometry atP'Pc is
required in order to continue the numerical calculation of
fracture deformation.

Figure 9~b! presents the plots of̂b&/^bin& for the sample
G1 obtained by using the modified fracture geometries
loads P.Pc . It can be seen that the new contacts sign
cantly influence the evolution of^b&. The error accumulates
with P/E and only the initial parts of the curves in Fig. 9~a!
represent the fracture deformations accurately. The cu
L1 and L2 are not very different from one another. Henc
the real evolution of̂ b& is best approximated by Fig. 9~b!
where the maximum value of^b& is taken for eachP/E.

C. Normal stiffness

The normal joint stiffnessk defined by Eq.~10! of real
rock fractures depends upon the normal load because o
nonlinear behavior of stress-closure relation of joints. For
small deformations considered here,k is constant until the
first overlap of the fracture surfaces.

The closureV defined by the continuous method~cf. Sec.
V B! is used to calculatek as the ratiodP/dV wheredP and
dV are small increments of the normal load and the cor
sponding closure of the fracture.

The normal stiffnessk is shown in Fig. 10 as a function o
the initial contact areaSc for all types of fractures. It is
important to recall here that for the same family of fractur
the two initial random surfaces are identical and the aver
distance between them is changed, thereby modifying
initial surface contactSc . Since the initialSc is related to the
initial load, this plot may illustrate the effect of the norm
load onk. The stiffness increases withSc , in agreement with
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3178 56MOURZENKO, GALAMAY, THOVERT, AND ADLER
some experimental data@11# and numerical results@8#.
The various types of fractures considered here show

ferent values of the normal stiffness for the same contact
Sc . According to the mean field theory, only two geomet
cal parameters,Sc andL/sh , determine the dimensionles
stiffnessksh /E. At Sc50.25, the correlation lengthL/sh is
equal to 3.98, 1.3, and 0.7 for the step, the self-affine and
Gaussian fracture, respectively; the difference inL/sh seems
to be one of the major causes of the observed differenc
the fracture stiffness. The parameterL/sh is related to the
contact numbernc per unit fracture area;nc is an increasing
function ofL/sh @18#. The fact that the fracture with smalle
number of contacts is stiffer agrees with the data of Hopk
et al. @8#.

k is compared to the theoretical formula~28! in Fig. 10,
when the correlation lengthL is estimated directly for all
samples by using the definition~26!. The linear predictions
are close to the numerical values ofk for the deterministic
fracture and at smallSc for the Gaussian and self-affine fra
tures. The nonlinear theory@Eqs. ~28!, ~30!, and ~32!# was
used in order to find the stiffness of the fractureG1 when
Sc varies from 0.12 to 0.45, which corresponds to the va
tion of Sc from the initial state ofG1 to the configuration
G1/4. The results displayed in Fig. 10 show that the nonl
ear theory is equivalent to the linear theory for small valu
of Sc , as it should; whenSc is larger than 0.3, the nonlinea
stiffness becomes significantly larger than the linear stiffn
and its evolution is parallel to the full numerical comput
tions.

It should be noted that in the case of the step fracture
initial fracture surfaces are planar and that the fracture
symmetric; thus, the two assumptions used in the mean
approximation are exactly fulfilled. The good agreement
tween the numerical and theoretical data even forSc50.25
for the step fracture shows that the exact distribution of
normal stresses on the contact surface has little influenc

FIG. 10. The dimensionless stiffnessksh /E as a function of the
fractional contact areaSc calculated numerically~* ! and by Eq.~28!
~s!. The solid lines correspond to Gaussian fractures, the do
lines to self-affine fractures.M denotes data for the step fractur
N denotes the data obtained by the nonlinear theory@Eqs.~30! and
~32!#.
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Figure 10 shows the normal stiffnessksh /E for Gaussian
fractures with variousbm /sh and for the sampleG1 obtained
by using modified fracture geometries. The numerical poi
for the two configurationsL1 andL2 , are almost on the sam
curve as the data forG1 , G3/4, and G1/2. Since at small
P/E the displacement of fracture surfaces for the sam
G1 is uniform, the modified geometry of the fracture at th
value of P/E can be obtained by diminishing the distan
bm between the two initial surfaces. WhenSc is increased,
the displacement becomes nonuniform and the modified f
ture L3 is stiffer than fractures reconstructed by a simp
reduction of bm /sh . This means that the dependence
ksh /E versusSc obtained by using samplesG12G1/4 only
approximates the variation of the fracture stiffness with
normal load for largeSc .

D. Comparison of the normal joint stiffness
with data and discussion

Laboratory studies@13,14,5# of the deformation character
istics of rock joints under normal load showed that the c
sure of joints varies nonlinearly with the normal stressP,
whatever the rock and joint types. WhenP is increased, the
joints reach a maximum closureVmax. Upon unloading, the
joints exhibit hysteresis, which is attributed to friction o
parts of the surface where the contact is oblique to the l
@21#. This strong nonlinear behavior of rock joints was al
obtained by the mean field theory~Sec. III! as displayed in
Fig. 3~a!. The joint stiffness at various normal loads is
function of the fractional contact areaSc . If the fracture
geometries used in the numerical simulations are assume
represent various initial stress states with variousSc , the
corresponding curvek(Sc) can be compared to the exper
mental data.

Bandiset al. @14# studied experimentally the joint defor
mation characteristics under normal and shear load. T
found that the experimental curvesP(V) for well interlocked
joints can be fitted by a hyperbolic relation@13# and they
proposed

k5k0S 12
P

k0Vm1PD 22

, ~38!

wherek0 is the initial normal stiffness. For dislocated join
obtained by displacing jointed block halves, a linear relat
betweenk andP was found:

k5bP. ~39!

Bandiset al. @14# estimated the contact area of fractur
by inserting a thin plastic sheet between the interlocked jo
walls; Sc ranged between 0.4 and 0.7 for various sample
the highest pressure.Sc and L are calculated here forP
58 MPa by using images of the contact area distribut
presented for joints compressed in interlocked and m
matched positions. The stiffnessk derived from the data of
Bandiset al. @14# for three types of rocks at the normal loa
P510 MPa and normalized byE/L is presented in Fig. 11

Figure 11 displays also the experimental data of Gen
@11# and Iwai @24#. Gentier studied hydromechanical beha
ior of well-interlocked fractures in granite and presented
relation between the apparent Young’s modulusEapp of frac-

d
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56 3179FRACTURE DEFORMATION AND INFLUENCE ON . . .
tured samples and the normal loadP, which is used to esti-
mate the normal stiffnessk. The fractional contact areaSc
was measured for the sameP by inserting a plastic film
between fracture surfaces.

The data of Iwai@24# were obtained on samples of basa
granite, and marble containing well-matched tension fr
tures. The values of the joint stiffness atP510 MPa are
estimated from the slopes of stress-closure curves.Sc mea-
sured for the maximum normal load was equal to 0.1–0.2
granite and to 0.25–0.35 for marble, respectively. These
are presented in Fig. 11, assumingSc equal to 0.1 and 0.2 fo
P510 MPa, for granite and marble, respectively. The e
perimental data are seen to be smaller than the nume
ones in Fig. 11.

Yoshioka and Scholz@25,26# measured closures unde
normal load in a joint within Westerly granite. The joint wa
obtained by cutting a rock sample with a fine saw. Two typ
of cut surfaces were prepared~referred to as ‘‘smooth’’ and
‘‘rough’’ ! with different grounding techniques. The surfa
height distributions are best described byg distribution func-
tions, from which we may estimatesh'2.4 and 10.5mm for
the smooth and rough surfaces, respectively. These estim
correspond exactly to the geometrical overlap of the two s
faces~di52.3 and 10.8mm! for zero pressure obtained b
fitting the results of a theoretical model to the experimen
data.

It is very difficult to compare their results to the data
Fig. 11, because the correlation lengthL is not known, and
because the contact areaSc is quite low. It is estimated as
less than 1% for the ‘‘smooth’’ joint, under the maxim
normal load imposed in the experiments~35 MPa!. However,
as already mentioned, the contact area is directly relate
the confining pressure. Therefore a comparison is made
stead in Fig. 3~b! with the predictions of the mean-fiel
analysis of Sec. III, which are in fair agreement with t

FIG. 11. The joint stiffnessk as a function ofSc normalized by
E/L. The solid line corresponds to numerical data for the Gaus
fractures, the dashed line to self-affine fractures, the dashed-d
line to Eq.~28!. The experimental data of Gentier@11# correspond
to the dotted line;3 ands represent the data of Bandiset al. @14#
for correlated and uncorrelated fractures,~1! corresponds to the
data of Iwai @24#. The numerical data of Hopkinset al. @8# are
denoted by* .
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numerical calculations~see Figs. 10 and 11!. The data for the
‘‘smooth’’ joint are very close to the prediction~28!, al-
though the latter are based on a different height distribut
function. The stiffnesses measured on the ‘‘rough’’ joint e
ceed the prediction~28! by a factor of about 2.

Durham and Bonner~1994! considered fractures in th
same type of Westerly granite, created in a cylindric
sample by the so-called brezilian technique. Unmated
mated fractures were obtained by reassembling the
samples with or without a transversal offset. We have e
mated the surface roughnesssh'sb /& from their aperture
probability distribution for the offset joint. Again, the conta
surface areaSc and its correlation lengthL are not known
accurately. Thus, the joint stiffnesses obtained from th
stress-closure plots for the unmated fracture are comp
with the mean field predictions in Fig. 3~b!. The agreement
with the prediction~28! for a self-affine fracture is very
good. Of course, the mated joints are much stiffer, and
stiffness coefficients are 2–5 times larger. The same aut
also considered joints in different types of rocks: Creight
Gabbro@28# and amphibolite@29#. But again the surface pro
files are highly correlated~u close to 1!, and no comparison
can be made with the present calculations, restricted tu
50.

Engelder and Scholz@30# measured permeability and ap
erture changes within very smooth joints in Cheshire qua
ite; samples were saw cut and ground with controlled gr
Their measurements of the normal stiffness coefficient
given in Fig. 3~b!. Since the roughnesssh was not reported,
it was taken equal to half the measured ultimate closure

Boitnott and Scholz@31# defined precisely the concept o
effective stress in an attempt to include pore and confin
pressures in a single constitutive law for joint closure. E
periments were performed on smooth lapped glass joints
on lapped and fractured rocks; pore and confining press
could be varied independently. No permeability measu
ments were performed. Some of their data for ground opt
glass with sh513.3mm are given in Fig. 3~b!. They are
similar to the measurements of Yoshioka and Scholz@25,26#
on the ‘‘rough’’ Westerly granite joints, which have a roug
ness in the same range.

For the sake of completeness, the numerical results
Hopkinset al. @8# are also presented in Fig. 11. Typical va
ues of the normal stiffnesskL/E of two plates separated b
disks of heighth and diameterD are calculated for the ratio
D/h58 ~maximumk!, 14, and 16~minimum k!. These val-
ues are larger than ours and they depend uponD/h.

This comparison shows that the results of the present
merical study of the deformational properties of fractur
agree qualitatively with other numerical and experimen
results. The difference between the numerical and theore
data, on one hand, and the experimental results, on the o
hand, may be partially attributed to uncertainties in the m
surements of fracture parameters. First, the contact areSc
was measured by using plastic films and is possibly ove
timated. In this case the experimental points in Fig.
should be shifted towards the left side of the plot. Seco
the correlation lengthL was never measured systematica
and its values are only roughly estimated here.

We now discuss the various sources of nonlinearities
are present in the process of fracture loading. The first on

n
ted
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3180 56MOURZENKO, GALAMAY, THOVERT, AND ADLER
the variation of the contact area because of progressive
sure; the simplest example of this effect is the Herz con
theory@10#. The second one is the fact that plastic deform
tions certainly occur very rapidly at the top of the asperiti
The third one is caused by the identations, i.e., the irrev
ible damages, induced by loading.

The present satisfactory comparisons with experime
show that the first source is probably predominant in th
and that the two other are of a smaller order of magnitude
should also be noticed that only unmated surfaces were
in the present simulations. This feature could be easily
cluded and it will probably improve the comparisons.

VI. FRACTURE PERMEABILITY

A. Fracture permeability variation with normal stress

In order to analyze the influence of the normal loadP on
the fracture hydraulic properties, the modified fracture geo
etry was determined at several levels ofP/E for each sample
and the permeability tensorBS was calculated. Since the dis
cretized fracture geometry does not vary continuously w
P/E, BS was calculated for the values ofP/E, which corre-
spond to the intersections of the curves^b& determined by
the continuous and the discretized methods@see Fig. 9~a!#.
This condition is thought to minimize the influence of th
discretization error on the relation between^b& andbS .

The two componentsBSxx and BSyy of the permeability
tensor@cf. Eq. ~4!# are determined and the hydraulic apertu
bS is calculated:

bS5@6~BSxx1BSyy!#
1/3. ~40!

When the sample percolates only in one direction~such as
G1/2 and S1/2!, Eq. ~40! is still applied with 0 along the di-
rection of no percolation.

The hydraulic fracture aperturebS normalized by its ini-
tial value bS05bS(P50) is shown in Fig. 12~a! as a func-
tion of the normal loadP/E. The sampleG1/4 does not per-
colate even atP50 and is not represented. As expected,
hydraulic aperturebS decreases withP/E for all fractures.
The variations of the mean hydraulic and geometrical ap
tures are similar;bS and^b& decrease withP/E more rapidly
whenbm /sh is large@see Fig. 9~a!#.

It is interesting to note that the curvesbS /bS0 versus
P/E are less influenced bybm /sh for the self-affine fractures
than for the Gaussian ones; recall that the character
length l /sh is equal to 6 and 2, for the former and the latt
respectively. Flow simulations in fractures@16# showed that
the hydraulic properties are less influenced bybm /sh when
l /sh is large.

The normalized hydraulic aperturebS /sh is displayed in
Fig. 12~b!. The dependence upon the flow direction is larg
for self-affine fractures than for Gaussian ones. This refle
the fact that the ratioL/ l of the sample size and of the co
relation length is smaller for the self-affine fractures~see
Table I!; in this case the results are more influenced by fin
size effects.

The variations ofbS /sh with P/E for the reconstructed
modified fracture geometriesL1 , L2 , andL3 are gathered in
Fig. 12~b!. The absolute value of the slope decreases w
P/E in agreement with experiments@32,11#. This behavior is
lo-
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analogous to the variations of^b&/sh with P/E @Fig. 9~b!#;
for small P/E, the deformation of the fracture itself is pre
dominant and induces a rapid decrease ofbS /sh ; at large
enoughP/E, the deformation of the solid above and belo
the fracture is predominant andbS /sh slowly varies with
P/E.

B. Fracture permeability variation with the mean aperture

An alternative presentation of the same results is given
Fig. 13 wherebS /sh is displayed as a function of^b&/sh .
The various data are efficiently gathered in this plot, wh
can be approximated by the linear relation

bS

sh
5a

^b&
sh

1b, ~41!

where a is close but not equal to 1~see Table III!. If the
relation ~41! is extrapolated towardsbS50, the ratio2b/a
may be considered as a critical aperture^b&c /sh at which the
fracture does not percolate. Table III gives2b/a for all
fractures. This ratio decreases with decreasing initial sep
tion bm /sh of fractures~G12G1/2, S3/22S1/2!. The value of
2b/a substantially decreases when the fracture is submi
to the large deformations (G1 ,L2 ,L3). This means that due
to the increasing stiffness, the fracture remains open and
fluid can flow even for small̂b&/sh . The numerical results

FIG. 12. The mean hydraulic aperturebS /bS0 ~a! andbS /sh ~b!
as functions ofP/E. The vertical bars represent the variations
bS with the direction of the mean pressure gradient.
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56 3181FRACTURE DEFORMATION AND INFLUENCE ON . . .
only approximately verify the standard ‘‘cubic law’’@33#
which relates the hydraulic and the mean apertures of
fracture. This is also true for the large deformations of
fracture G1 ~cf. Fig. 13!; the value a decreases from
0.91(G1) to 0.81(L2) and 0.72(L3).

C. Hydraulic aperture as a function of mean aperture

Experimental studies of the hydromechanical behavio
fractures under a normal loadP @11,22,24# showed that a
nonlinear relation is obtained between the hydraulic fract
aperturebS andP, which can be associated with the nonli
earity of the dependence ofV upon P/E. The experimental
data of Gentier@11,22# and Gale@22# are displayed in Fig.
14. Both apertures,bS and ^b&, are normalized by the ex
perimental valuesb&.

Fractures studied by Gentier@11# had highly correlated
surfaces withu'0.99 and their hydraulic properties are se
to be very sensitive to the geometrical characteristics.
experimental points are far from the curve for the pure P
seuille flow bS5^b&. The data of Gale@22# are less influ-
enced by the fracture roughness and they better agree
the theoretical predictionbS5^b&. The permeabilities mea
sured by Durham and Bonner@27# in an unmated Westerly

FIG. 13. The mean hydraulic aperturebS /sh as a function of
^b&/sh . Same conventions as in Fig. 8. The diagonal dotted
corresponds tobS5^b&.

TABLE III. The coefficientsa and b of the relation~41! for
various fractures.

Sample name a 2b 2b/a

G1 0.91 0.35 0.38
G3/4 0.90 0.33 0.37
G1/2 0.79 0.25 0.32
L1 0.92 0.35 0.38
L2 0.81 0.24 0.30
L3 0.72 0.14 0.19
S3/2 0.74 0.23 0.31
S1 0.73 0.20 0.27
S1/2 0.75 0.16 0.21
M 1.00 0.003 0.003
e
e

f

e

e
i-

ith

granite joint under 80 and 160 MPa normal loads~P/E
51.931023 and 3.731023! are much larger than in the
corresponding mated joint~hydraulic aperture close to zero
not represented!. The amphibolite joint investigated b
Durham@29# is also highly correlated. The initial mean ap
erture is not known accurately. Two plots are proposed
Fig. 14, by assuminĝbin&5120mm ~the upper bound for
^b& at P50 mentioned by the authors! and ^bin&
5100mm. One can see that the numerical curvesbS versus
^b& also presented in Fig. 14 exhibit the same trend as
experimental results.

Kranz et al. @34# measured the permeability of Barr
granite, which was saw cut and ground with various co
trolled grits. Changes in permeability were found to va
linearly with pore and confining pressures that could be v
ied independently. Only a few data are given on apert
variations with pressure. Some of their permeability me
surements~from their Table II! are plotted in Fig. 14.

Figure 14 presents also the numerical data of Mourze
et al. @16# obtained for self-affine fractures. Each data po
is the average over 10 realizations of the fracture surfa
One can see that the hydraulic aperturebS of the fractures
submitted to normal load follows the similar linear depe
dence as the valueb̄S averaged over statistically independe
realizations of fractures with corresponding mean^b&. The
results of the present numerical calculations are within
interval of statistical scatter of the data.

Comparison shows good agreement between nume
and experimental data. All curves represent a similar dep
dence of hydraulic properties of fractures upon the geome
cal ones.

e
FIG. 14. The hydraulic aperturebS as a function of the mean

aperturê b& normalized by&sb . The solid line corresponds to th
numerical data for Gaussian fractures, the dashed line to the
affine fractures. The dotted line representsbS5^b&. The experi-
mental data of Gentier@11# and Gale@22# are denoted by3 ands,
respectively. Thed refer to Durham and Bonner’s@27# measure-
ments in an unmated Westerly granite joint. Durham@29# data for
an amphibolite joint~1! are given for two reasonable guesses
the initial aperture. The smaller black dots are the data of Kr
et al. @34# for Barre granite. The numerical data of Mourzenk
et al. @18# are denoted by* . The vertical bars represent the standa
deviation ofbS due to the statistical scatter of the data.
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VII. CONCLUSIONS

The macroscopic mechanical and hydraulic properties
fractures with rough surfaces were analyzed by solving
merically the local three-dimensional equations. The so
matrix is assumed to be an elastic solid described by
classical Lame´ coefficients. The flow through the fracture
analyzed by solving the Stokes equations. The full deform
tion history of the fracture is represented as a series of s
with the successive appearance of new contact zones.

Three types of fractures were addressed in this pa
namely, a step deterministic fracture and two fractures w
random normally distributed surface heights and with Gau
ian and self-affine spatial correlations. The dependence
the mean aperturêb& and of the hydraulic aperturebS upon
the applied normal loadP were analyzed. The variations o
^b&/^bin& andbS /bSo were found to be more important whe
the mean separationbm /sh of the fracture increases; the hy
draulic properties of the fractures follow the mechani
ones.

The normal joint stiffnessk of a fracture was analyzed a
a function of the initial contact areaSc . The experimental
stiffness of the real rock joints is smaller then the numeri
one, but the relationsk(Sc) are qualitatively similar.

The relation between the numerical values of the hydr
lic aperturebS and the mean aperturêb& is similar to the
ones derived from published laboratory experiments. The
draulic properties of fractures are substantially influenced
the surface roughness.

A mean field analysis of the deformation of the fractu
surfaces provides a formula of the normal joint stiffness a
function of the geometrical parameters of the fracture and
the mechanical properties of the solid matrix. The numer
results are in good agreement with the mean field the
especially for smallSc .

No substantial influence of the type of the spatial corre
tions on the macroscopic mechanical and hydraulic prop
ties was found. However, final quantitative conclusions w
be reached only when systematic calculations are perfor
on a large series of fractures of the same type. The ex
f
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sions of this work to macroscopic tangential stresses is
progress.
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APPENDIX: DERIVATION OF THE JOINT STIFFNESS
IN THE MEAN FIELD APPROXIMATION

The covariance functionRc(t) of the random fieldZc(r )
defined by Eq.~24! can be derived from the covariance fun
tion Ch(t) of the fracture surface heighth(r ). Because of
ergodicity,Rc(t) can be written as

Rc~ t !5
1

Sc~12Sc!
^~Zc~0!2Z̄c!~Zc~ t!2Z̄c!&. ~A1!

An equivalent form of the definition~24! is

Zc~r !5 H1,
0

w,0
w>0,, ~A2!

where w5h12h2 is a Gaussian field with meanbm and
standard deviation&sh . Introduction of Eq.~A2! into ~A1!
yields

^~Zc~0!2Z̄c!~Zc~ t!2Z̄c!&5E
2`

0

dw1E
2`

0

dw2 w~w1 ,w2!

2Sc
2,

w15w~0!, w25w~ t!, ~A3!

where w(w1 ,w2) is the joint distribution of the Gaussia
variables
w~w1 ,w2!5
1

4psh
2A12g2

expF2
~w12bm!222g~w12bm!~w22bm!1~w22bm!2

4sh
2~12g2! G ,

g5
Ch~ t !

sh
2 . ~A4!
The first term in the right-hand side of the Eq.~A3! can be
calculated by using the transformation

w15bm22shx,

w25bm22sh~gx1A12g2y!
E
2`

0

dw1E
2`

0

dw2 w~w1 ,w2!

5
2

p E
bm/2sh

1`

dxE
ax

1`

dy e2x22y2
,

a5A~12g!/~11g!. ~A5!
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Use of the distribution~15! for w implies

Sc5
1

Ap
E

bm/2sh

1`

e2x2
dx. ~A6!

The correlation functionRc(t) can be written as

Rc~ t !Sc~12Sc!5
2

p E
bm/2sh

1`

dxE
ax

x

dy e2x22y2
. ~A7!

The definition~26! of the correlation length yields

Sc~12Sc!L5
1

2p E
0

1

T~g!
exp@2bm

2 /2sh
2~11g!#

A12g2
dg,

~A8!

whereT(g) is the inverse of the correlation functiong(t).
When the covariance functionCw(t) is described by the

Gaussian~17! or by the self-affine covariance~18!, the cor-
relation lengthL becomes

L5
lCt~Sc!

Sc~12Sc!
, t5G,s, ~A9!

CG~Sc!5
1

2p E
0

1
A2 lng

exp@2bm
2 /2sh

2~11g!#

A12g2
dg,

Cs~Sc!5
1

2p E
0

1

~12g!1/2z
exp@2bm

2 /2sh
2~11g!#

A12g2
dg,

~A10!

where indicesG and s correspond to Gaussian and se
affine fractures.

The expressions~A7! and ~A10! can be simplified in the
two opposite limits,bm /sh→0 andbm /sh→`. For small
bm /sh ~or Sc'0.5!, the correlation functionRc(t) becomes

Rc~ t !'
2

p
arcsing1

2bm
2

psh
2 F 2

p
arcsing211S 12g

11g D 1/2G .
~A11!

The coefficientsCs andCG are
n

CG'C12
bm

2

2sh
2 C2 , C1'0.170, C2'0.034,

Cs'C1* 2
bm

2

2sh
2 C2* , C1* '0.129, C2* 50.019,

~A12!

whereCs is found forz50.5.
At large bm /sh , the leading term of the asymptotic rep

resentation ofRc(t) is

Rc~ t !'
4sh

2

Apa~11a2!bm
2

expF2
bm

2 ~12g!

4sh
2~11g!G . ~A13!

This formula is valid forbm /sh@1 and bma/sh@1. For
largebm /sh , but smallbma/sh , Rc(t) is

Rc~ t !'12
bm

sh
S 12g

p~11g! D
1/2

. ~A14!

The coefficientCs is represented forbm /sh@1 as

Cs'D1* S 2sh

bm
D 1/2z

expF2
bm

2

4sh
2G , D1* 5

G~1/z!

Ap21/2zG~1/2z!
,

~A15!

where D1* '1 for z50.5; G is the classical Euler gamm
function. For a Gaussian covariance,CG is expressed asCs
for z51:

CG'
4sh

2

p&bm
2

expF2
bm

2

4sh
2G . ~A16!

These formulas can be used together with the rela
between the mean areaSc andbm /sh for bm /sh@1;

Sc'
sh

bmAp
expS 2

bm
2

4sh
2D ~A17!

in order to analyze the variation of the normal fracture st
nessk given by Eqs.~28! and~A9! with the contact areaSc .
e

h.
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